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ON CERTAIN SINGULARITIES IN SOLUTEONS OF EQUATIONS OF 
BOUNDARY LAYER ON A MOVING SURFACE* 

Vik. V. SYCEEV 

Singularities of solutions of equations for unsteady boundary layer, for the bound- 

ary layer on a moving surface, and for a wake generated by a specified positive 

pressure gradient are investigated. 

Investigations of unsteady boundary layer separation on a solid surface led to the 

establishment of the known analogy of that phenomenon with the steady separation on a moving 

surface /1,2/. According to the Moore-Rotta-Sears definition (see, e.g., /1,2/) the 

simultaneous vanishing of friction and of the velocity vector longitudinal component occurs 

at the point of boundary layer separation on a moving surface /1,2/. That point is singular 

and lies inside the boundary layer /l-4/. The appearance of the singularity is similar to 

that of the Goldstein singularity /5/ at the point of zero friction of the moving surface 

(see, also, the survey in /6/l. Although separation is actually self-induced /7,8/, in- 

vestigation of the structure of singularities which, generally and unavoidably, appear in 

solutions of equations of boundary layer with specified positive pressure gradient is in 

itself of interest. Appearance of such singularities, for instance in numerical solutions 

/3,4/ always indicates the impossibility of laminar flow. 

1. Let us consider the behavior of solutions of equations of laminar boundary layer in 

a two-dimensional flow of incompressible fluid with a specified positive pressure gradient 

on a finite section of a surface moving in the downstream direction at constant velocity. 

We denote by Lx and Ly the curvilinear orthogonal coordinates directed, respectively, along 

the body surface and the normal to it, by U,u and iJ,v the corresponding velocity vector 

projections, by po; -I- pU,‘p the pressure, and by p the density. L is a characteristic 

dimension of the body in the stream, u, and pm are parameters of the oncoming stream, and 
R = lJ,L/v,R+w is the Reynolds number. 

We exPresstheequationsofthebonndarylayer and the respectiveboundaryconditions in terms 
OfMisesvariables au dp a 

lL-+x=Uayr dl: (1.1) 

where II, is the 

surface, and 

as Y+cois 

hood of point 

U=U (L’V Y = v=o, (Y =O), u-+U(z)(Y4w) 

u = u* (Y) (5 = 50 <O), y = R’L+, y = R’ly, V = R'h 

dimensionless stream function, VW - 0 (I), VW> 0 is the velocity of the body 

u*(y) is the initial velocity profile. Function U(s)which determines velocity 

assumed known from the solution of the external problem which in the neighbor- 

z = 0 can be represented as 

17 (5) = a, + cz- '1, (-5) + 0 [(-Z)21 (l! + -0) (1.2) 

The pressure gradient behavior is then defined as follows: 

dp / dx = lb, + 0 [(-x)1 (5-h -0) (1.3) 

where a, and h, are positive constants. 

Let us consider the behavior of soluticn of the boundary layer equations in the neighbor- 
hood of the point with coordinates (O,Y,), where Y, is some constant. Let this be an arbitr- 
ary point, i.e. both components of the velocity vector are at that point finite. Then the 
solution of problem (l.l)-(1.3) as z+ -0 and Y-+-Y0 , can be represented in terms of 
usual variables in the fcrm of the regular expansion 

y = y', W) -t (-r)Y,(Y) + 0 [(-2yl, ‘Y, (Y) =: Yy, + CQY’ -;- c+y*2 + a,y*3 + a4y*4 +o(y*5) 
(l-4) 

Yl (I-‘) = &l + p,y* -I- /3*Y"Z + p3Y*3 + 0 (Y*‘), Y* = Y - Y, 

men y,, al, a2, a3, a,, PO are arbitrary constants and constants Bl, I%? B3 are defined in terms 
of the latter and of h, from (1.3). 

If at the considered point the terms that define friction and the velocity vector long- 
itudinal component simultaneously vanish, then in (1.4) 
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a, = as = 0, a3 = ho 16, PO = 24a,howi (1.5) 

Let us now consider problem (l.l)- (1.3) for the neighborhood of the point at which 
friction and the longitudinal velocity vector are zero, assuming that relations (1.5) between 
constants are not satisfied and, consequently, the solution is irregular. This is a more 
general case since in the solution outside the neighborhood of that point constants al,a,,a,, 

a4, PO are arbitrary and determined by the external boundary conditions, while in the neigh- 
borhood of the point the solution is regular , when conditions (1.5) are imposed on these 
constants. 

If the boundary layer is in the region of increasing pressure downstream, the fluid 
in that layer is retarded. Since the body surface moves downstream, hence, beginning at 
some .r = .z* > 50 (Fig.1) the velocity profile along each line z = const has a minims at 
some point lying outside the body surface, and that point is the point of zero friction. 
Hence in the neighborhood of point z = -0 friction vanishes along some line. 

As in /5/, we introduce in the neighborhood of the zero friction line a sublayer in 
which inertial and viscous terms are quantities of the same order. In the orthogonal system 
of coordinates (~1, Yi) attached to the zero friction line and with origin at point (0, Y,) 
the solution for such sublayer (region 1 in Fig.2) 

is of the form 
fig.1 

Y = w, + (--x,)“~f, (Q + (- Xl)“fl (rl) -I- 0 I(--ZJ’d, q = Y, (-- 5X”‘, a E (3/G, f/J (1.6) 

Substituting expansions (1.6) into fl.lf- f1.3), we obtain the following problem: 

f*"- -+fo"fo 3_ -#-ho= 0; fo(O)= CO, fo”(0) = 0 (1.7) 

with fo(q) free of exponentially increasing terms as 1'lI-t. 
At least two solutions cf this problem exist. One of these, obtained in /5/, is of the 

form 

fo (3 = hov3 16 (co = 0) (1.8) 

and the other of the form 

fo (rl) = (2hoPrl -t- co (1.9) 

Let us consider in detail the solution of the problem corresponding to solution (1.9). 
(The case when the solution of problem (1.7) is of the form (1.8) and, consequently, satisfies 
the supplementary condition fo'(0) ~0, is considered i.n Sect.3, below). For the function ii(~) 
of expansion (1.6) with (1.9) taken into account, we obtain the following problem: 

fr' (q) = @ (Q), q = 2.3-‘/s (2&f-‘.‘*ql - co (2ho)-‘/x (1.10) 

Yg = (4a + 1) / 3, (9” - q#D’ + v,@ = 0, w (0) = 0 

where Q(Q) does not contain exponentially increasing terms as I%I--+=). The obtained 
equation for function @((9r) is the Weber equation (see /9/). Problem (1.101 has a zero 
solution only when vO = 2 (n - 1), n = 1, 2, . . ., i.e. a = (6n - 7)/4. Since in expansion (1.6) 
a f (s/*, './&), we have a = '/h and the solution is d, (qrj := c1 (nX2 - 1). Reverting to the in- 
itial variable q and satisfying the condition that friction must vanish when q=O, we 

obtain 

fr(T$ = cr 11 Qzh,)ry*/ 4 - II + cr, co = 0 (1.11) 

where c1 and crt are arbitrary constants. 
Note that solution (1.61, (1.9), (1.11) obtained for region I cannot be merged with the 

solution for the basic part of the boundary layer, where the velocity vector longitudinal 
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component is a quantity of order unity. Because of this, 

(region 2 in Fig.2), where the flow is locally inviscid. 

form 

we introduce one more sublayer 

The respective equations are of the 
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I4 = (-Z)“‘& (5) + 0 [(-w-3)1 + 0 r(-sylq, E = x (-x)-S, x = Y - Y, + ‘PO (ii?), p < 3/& (1.12) 

where 'p,,(z)-+0 as 5+-o, and which defined the difference between the zero friction line 

and the streamline Y = Y,. Substituting expansion (1.12) into (l.l)- (1.3) and setting 

mO(s) = k,(--s)B + o[(--z)S], we obtain for function g,,(E) the equation 

28 (5 - k?) g,'gll - go2 + 2% = 0 

Integration of this equation and its merging with the solution for region 1 yields B = '12, 

k, = 0, g, (5) = (Ao2Ea + 2a,)'/z. Having determined ccnstant p, we obtain for the first two 

terms of expansion in region 2, as z+ -0 the final solution of the form 

u = (--s)"% (5) + (-5) g, (E) + 0 I(--x)*4, Y = G* (5) + h, (E) + (--z)“+z, (5) + 0 [(- z)l (1.13) 

E = x (-s)-"2, x = Y - Ys + 'PO (z), 'PO (5) = o[(-41 

go (El = (Ao”E* + 2h,)“~ , g, (8 = A,E3 (4T2 + 2a,)-'12 - Aoa (3aJ' (Ao2E* + 21,) 

where G* (5) is some, so far arbitrary, function. The arbitrary constants A,, A,, '4, are 
determined by the external boundary conditions. (Formulas for the velocity vector vertical 

component are directly obtained from the third of Eqs. (1.11, and are not given here). 

Solution (1.13) for region 2 satisfies the condition that friction must vanish along line 

x = 0 and be regular in its neighborhood. It is, therefore, superfluoustointroduce region 

1, since the solution in it is a continuation of solution (1.13) in the region where Y is 

Y, = 0 I(-r)'y. 
In regions 3 and 4 (Fig.2), where the velocity vector longitudinal component is a quant- 

ity of order unity; in conformity with (l-2), as Z---O, the solution can be represented 

ir the form 

u = ui (‘r) + (-X) ui* (Y) + o I(-+], Y = Gi (x) + Yi (y) + (- 2) Yi* (y) + 0 [(- @I (1.14) 

ui* (Y) = a,U,-l(Y) - [Uj(y)ui' (YY)~', Yi (Y) = l Ui-'(Y)dY, Yi* (Y) = -J' Ui* (Y) U,-'(Y) dY 

i = 3,4, U,(Y)- a, (Y-+ cm) 
whose merging with the solution in region 2 yields 

U, (y) -- A, (y - y,) t 0 [('J' - YJ21 (Y + +Y,), A, > 0 
G, (z) .-= G* (z) - (2Ap In la, (2A02)-l (-x)1 + o (1) 

U,(Y) -- A,(Y', - Y) + 0 [(Y, - Y)*l (Y-t -Y,) 

G4 (z) - G* (x) + (2A,)-'illn ]a,, (2A,*)-1 (+)I + o (1) 

(1.15) 

To satisfy boundary conditions in (1.1) when Y=O we introduce the sublayer (region 

5in Fig.2) in which the effect of viscosity forces will be assumed substantial. We represent 

the solution in the form 

ZL = u,,. + (--r)VF, (5) + 0 [(-l)l, 5 = Y (- 2p. -f E (0, 1) 

The substitution of this expansion into (l.l)-(1.3) shows that F,(c) satisfies the 

Weber equation 2U,,.F," - CF,' + 2yF, = 0 with the boundary conditions that F,,(O) = 0 and that 

F,(L) does not contain exponentially increasing terms as c-+cn. The problem has a nonzero 

solution only if y ~~ n - I/*, n -= 1, 2, . . . . Since y E (0, 1), y = I/, and then F, (5) = 605. 
Finally, the solution in region 5, which satisfies the boundary conditions for Y = 0, can be 

represented in the form 

u ~~ U, + (-z)"?F" (6) + (-z) F, (5) _I- 0 [(-zy ~1, I’ -.. (-z)‘!:U,,-‘< + (-z) II,, (5) + 0 I(--z)“h] (1.16) 

5 Y (-z)-"', F, (6) = 6,5, 17, (5) ~= 6,5", II, (<) z= -6, (2Uw2)-l 52, 6, = (a, - bo2Uw) (2U,*)-' 

The arbitrary constant 6, is determined by external boundary conditions. The merging of 
solutions (1.16) with solution (l-14), (1.15) shows that for region 4 we have U&(Y) = u, + 
b,Y + b,Y'+ 0 (V) as Y-O and G,(s) = 0. The last equality together with formula (1.15) 
yields for function G* (5) which appears in (l-13)- (1.15) the expansion 

G* (5) -(2~,)-1 11~ La, (2A,?)-1(-~)1 + o(i) (5+ -0) (1.17) 
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Thus the boundary layer thickness logarithmically increases as point 5 = -0 is approach- 
ed. Owing to this, the solution of boundary layer equations in the neighborhood of that point 
behave in a singular manner. It follows from (1.16) that friction on the body surface is 
finite quantity 

2. Let us show that the derived solution cannot be continuously extended beyond point 
5 = 0. 

In conformity with /S/ we continue the solution for the basic part of the boundary layer 

into the region of positive z. As r--f $0, the solution there is of the form 

U = U, (Y) + xU,O (Y) -t 0 (x2), Us” (Y) = AOU3--1 (Y) + [U, (Y) U,’ (Y)l’ (2.1) 

For I+ +Y’, U,(Y) = A,(Y - Y',) + 0 I(Y - Y,)*l. H ence expansion (2.1) is not valid in the 
region where Y-Y8 = 0 (2"'). The solution in that region can be represented in the form 

u = x'/zR,, (s) + 0 (x), s = fx-'lz, f = Y - Y, + o (x) 

Substituting this expansion into the boundary layer equation, taking into account (1.3), and 
integrating, we obtain 

R, (s) = (Ao2sZ - 2h,,)'/3 

which shows that when s2 < 2h0Ao-2 the solution is imaginary. Thus the derived solution, 
similarly to Goldstein's solution for a stationary surface /5/ cannot be ccntinuously extend- 

ed beyond the singular point. 

We recall that passing in the derived here equation from the coordinate system attached 

to the singular point to a system attached to the moving surface yields the solution for 
unsteady equations of the boundary layer (see /1,2/), which corresponds to the neighborhood 

of a singular point moving upstream at constant velocity cJ,= -lJ,,. 

3. Let us consider the case when the solution of problem (1.7) for function fo(q) is 
defined by formula (1.8) and, consequently, satisfies the supplementary condition for (0) = 0. 

The solution in the neighborhood cf the considered point, obtained in /lo/ is in this 

case of the form 

Y = Y, + (-xpfo (11) + (-21) fl* (4 + (-x,)“!‘f** (3 + 0 u--%)’ ?I (3.1) 

n = Y, (-x$‘:~, f. (q) = h,$ / 6, fl* (q) = a& (rl’ -t 24W) + a,*v 

fa* (1) = a,$’ + 8a,*a&-‘$ + a2*q2 + 1120a,h, + 2~,*~h, - (24c~~)~Ih,-~q 

where a,, as, ai*, a2 * are arbitrary constants. If the line Y1 = 0 does not coincide with that 

of zero friction, solution (3.1) has a singularity at point 51 = -0. However with the use 

of Prandtl's transform which in this case is of the form 

Y -+ Y, Xl-+ x1. Y, --t Y1 - 2a,*h,-I(-XI)‘72 + 0 I(-xJkl 

the singularity can be eliminated. This transformation is similar to passing to a system of 

coordinates attached to the zero friction line. Hence it is necessary to set a,* = a,* =0 in 
solution (3.1) which represents a regular expansion of (1.4) and (1.5) that can be continuous- 

1Y extended in to the region of positive z. 
Thus solution (1.8) corresponds to a regular expansion in the neighborhood cf the con- 

sidered point. Solution (1.9) then corresponds to the singular behavior. The surmise in /l/ 

that solution (3.1) obtained in /lo/ defines the singular behavior of the solution of problem 

(l.l)- (1.3) does not on the evidence of the above analysis appear to correspond to reality. 

Note that rhen the solution is singular, friction in the first two terms of the expans- 

ion vanishes (as in /ll/) along the streamline Y = Y',. If, however, the solution is regular, 

friction vanishes along a line which generally is not a streamline. This is related to that 

the singular solution is locally inviscid and, consequently, vorticity remains along stream- 

lines Yyy = O(Y). 

4. Finally, let us consider the singularities originating on the axis of symmetry of a 

laminar wake in an incompressible fluid with a specified positive pressure gradient. 

The flow in a two-dimensional steady symmetric wake downstream of the body the flow over 

which is laminar, is defined by equations of the boundary layer. As in Sect-l, we introduce 

dimensionless functions and independent variables, and locate the origin of a Cartesian co- 

ordinate system at the point where the axial velocity is zero. The boundary conditions at 

the wake axis of symmetry are of the form 
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u+Y=Y=o (P=O) 

The solution for the flow outside the wake is assumed known, and velocity and pressure 
variations at the outer boundary of the wake as Z--LO are defined by formulas (1.2) and 
(1.3). 

On the basis cf the above analysis of solution of the equation of the boundary layer on 
a moving surface it is possible to show that in the considered point neighborhood the solu- 
tion generally behaves in a singular manner. In the inner region the solution is defined by 
formula (1.13) and in the wake basic part by formulas (1.14) and (1.15) in which we set 
'f'.: 'F~(z) = A, = G* (z) = 0. This solution cannot be continuously extended beyond the singular 
point. If that point is regular, the solution in its neighborhood is defined by formulas 
(3.1) in which we setY. =al=a,* = a%* =O. Itcanthenbecontinuously extended in the region of 
positive +. 
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